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Specific features of an SGGA-based multireference direct CI program working 
in large internal spaces are discussed. In particular, advantages resulting from 
the explicit separation of the orbital and the spin spaces are explored. Concepts 
allowing for the efficient creation of a flexible and symmetry-adapted CI basis, 
for the high-speed generation of the coupling coefficients and for structuring 
a simple permutation driven algorithm to handle the orbital space are briefly 
discussed. 
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1. Introduction 

The progress in designing multireference direct CI (MR DCI) algorithms is 
certainly one of the most spectacular events in the field of computational 
chemistry. Since the idea of direct CI has been formulated by Roos in 1972 [1] 
the length of the CI expansion, which still may be handled in a reasonable way, 
has grown up by two orders of magnitude crossing 106 several years ago [2]. The 
key to the success lies in the global approach to the problem in which symmetry 
properties and structural specificity of the N-electron space rather than explicit 
expressions for the basis functions or for the matrix elements determine the 
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computational strategy. Significant progress in understanding the internal struc- 
ture of the CI space, in particular due to extensive use of the group theory, 
resulted in two alternative approaches known as the graphical unitary group 
approach (GUGA) [3, 4] and the symmetric group graphical approach (SGGA) 
[5]. Both approaches take full advantage of all spin symmetries but, due to their 
sophistication, lead to algorithms which are rather complex and difficult to 
vectorize in their logical parts. On the other hand, development in the field of 
supercomputers stimulated work aimed at creating methods which are very simple 
and easy to vectorize at the cost of an increased amount of simple algebraic 
operations. To this class belongs the determinant-based approach of Handy [6] 
and the vectorizable full CI  method of Siegbahn [7]. 

Though it is hard to predict whether the future belongs to the simplistic or to 
the sophisticated formulations, at present the most advanced and most general 
DCI programs are based on GUGA [8-11]. In the GUGA programs the external 
space, which usually provides a vast majority of the basis functions, constitutes 
a simple and vectorizable part of the algorithms (see, e.g., [9]). Efficiency in 
handling large internal spaces still needs improvement. In particular reducing 
(possibly eliminating) the formula tape and extending the flexibility of the CI 
basis would be most welcome modifications. It is natural to expect that SGGA, 
being both simpler and more general than its unitary-group-based counterpart, 
may offer some interesting solutions. This option has never been seriously 
explored. 

It is the aim of this paper to present some preliminary data on a general DCI 
SGGA code. The program is still under construction, therefore we present here 
several examples of solutions to partial problems being specific for SGGA, i.e., 
resulting from the explicit separation of the orbital and the spin spaces. In 
particular we discuss the construction of the CI basis, the evaluation of the 
coupling constant matrices as well as their assigning to the pairs of interacting 
configurations and to the primitive integrals. We skip subjects being common to 
all DCI formulations, such as the four-index integral transformation and the 
construction of the eigenvectors. Also the question of dealing with the external 
space and, in particular, an important problem of the optimum strategy [9] are 
left aside, since our main objective is improving efficiency in handling large 
internal spaces. 

A complete and self-contained description of the method is presented in [5]. In 
order to avoid unnecessary and lengthy explanations concerning notation and 
basic concepts we shall use the same notation as the one in [5] and we shall refer 
to this paper as I. Reports on several methods of evaluation the coupling constants, 
used in this program, have been published separately [12, 13]. A reader interested 
in a more detailed account is referred to these papers. The program is being 
developed as a part of the system MUNICH [14] in the Garching group of 
molecular astrophysics, on two computers, namely a Siemens 7880 and a CRAY 
XMP. 
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2. Construction of CI basis 

The CI basis consists of antisymmetric and spin-adapted configuration state 
functions (CSFs) IA: SM, 1) (Eq. (I.48)). All f(S, s) CSFs corresponding to a 
single orbital configuration A form a configuration state vector (CSV). The basis 
set of configurations is described by the orbital graph. Every path in the graph 
is supplied with its lexical index mx (1.97) and represents an orbital configuration 
(A). The mapping between the lexical indices of the paths and the elements of 
the CI vector is facilitated by introducing the index vector I(mA) (1.98). All these 
concepts are common to both GUGA and SGGA, except that in SGGA the index 
vector is shorter since it corresponds to the set of the orbital configurations only 
and the graph is simpler since it describes the pure orbital functions (i.e. the 
Hartree products of orbitals) only. 

The procedure aimed at defining the CI basis consists in (1) determining the 
shape of the graph with certain vertices and/or  arcs removed whenever this is 
needed, (2) Removing specific configurations, viz. those which do not fulfill the 
symmetry or the excitation limit requirements. 

The input data include the reference configurations, their excitation limits and, 
optionally, identifications of the removed vertices and arcs. From- these data the 
orbital graph is constructed and represented using weight vectors as it is described 
in Sect. II.1.1. of I. Both space and time spent on this introductory step is entirely 
negligible. Even in cases of very large internal bases (106-107 ) the time does not 
exceed 0.2 s. 

The highest efficiency of the program is achieved when the configuration basis 
is defined entirely by the geometry of the graph. Therefore the development of 
insights regarding relations between the relevance of a configuration and its 
location in the graph is particularly important. For this reason the geometrical 
representation of the graph is printed out upon request. Several examples are 
shown in Figs. 1-4. The full CI graph for the water molecule in a double-zeta 
basis (cf. [7] contains 270270 CSVs (Fig. 1) corresponding (for S = 0) to 100 2001 
CSFs. The basis is reduced by a modification of the graph to 24 031 CSVs (Fig. 
2) if only configurations being singly-, doubly-, triply- and quadruply-excited 
relatively to a single reference are retained. The Abelian symmetry may be 
introduced by designating different "symmetry versions" to vertices (as it was 
done in GUGA [15]). However, when all orbitals (except those belonging to the 
totally symmetric representation) appear in the graph in an equivalent way, as 
is the case for a full CI, then symmetry-adapted graphs may be constructed by 
removing certain vertices. An example is shown in Fig. 3. Another example (for 
the case of full-CI 1A 1 state of water molecule in a basis of 11 orbitals) is given 
in Fig. 4. The reason for this construction is easily understood if we remember 
that the symmetry of a configuration containing m electrons in orbitals bl, m' 
electrons in orbitals b2 and N - m -  m' electrons in orbitals al is A1 if both m 
and m' are even, A2 if both m and m' are odd, B1 if m is odd and m' is even 
and B2 if m is even and m' is odd. 
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Fig. 1. The full CI graph of water molecule in a double-zeta basis (10 electrons, 14 orbitals). The 
orbital indices are supplied with the symmetry labels. The CI basis consists of 270 270 CSVs, what 
corresponds to 1 002 001 singlet CSFs 
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Fig. 2. The same as in Fig. 1 , but only configurations being at most quadruply excited relatively to 
the configuration for which the first 5 orbitals are doubly occupied are retained 
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Fig. 3. The full CI graph for water molecule in a double-zeta basis containing only A l configurations; 

76 670 CSVs corresponds to 256 473 1A 1 CSFs 
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Fig. 4. The full CI graph for A 1 configurations of  water molecule in a basis of  11 orbitals 

A further reduction of the CI basis by removing specific configuration is facilitated 
by means of the index vector. At this step we run over the entire graph checking 
fulfillment of the additional restrictions imposed upon the configurations. The 
following options have been included: the maximum number of singles, excitation 
multiplicity (which may be different for different reference configurations), 
Abelian point-group symmetry and the first-order interaction space restrictions 
[16] for CSFs (cf. 1.5.3. in I). Besides, a set of configurations to be removed may 
be specified explicitly. The dimension of the index vector is equal to the number 
of paths in the configuration graph, i.e. it is much smaller than the length of the 
CI basis (in the examples in Figs. 1-4 by factors of 3.7, 2.5, 4.1 and 2.5, 
respectively). 
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Table 1. CUP times (in seconds) on Siemens 7880 for creation of the index vector. 
The CI bases are the ones defined in Fig. 4 (n = ll), in Fig. 3 (n = 14) and in Fig. 
1. The last basis has been reduced to 1A 1 by removing a part of configurations 
during construction of the index vector (n = 14"). 

CI basis n = 11 n = 14 n = 14" 

No. of CSVs accepted 12 396 76 670 76 670 
No of CSVs removed 0 0 193 600 

Generation of the graph a 0.12 0.12 0.14 
Index vector: modified depth-search 0.20 1.09 3.59 

algorithm 
Index vector: broken depth-search 0.04 0.24 0.83 

algorithm 

a Includes reading and analysing input data as well as constructing and printing the 
geometrical representation of the graph 

The running-over- the-graph algori thm belongs to the most  frequently used ones 
- not  only at the step determining the index vector  but,  more  important ly,  in 
packing up pairs o f  interacting configurations. Therefore,  we have tested several 

kinds o f  the algorithms: 

1. Breadth search. The algori thm is described in detail in Sect. 11.1.2 o f  I. It is a 
fast but  space-consuming method.  

2. Depth search. The algori thm is based on the classical idea o f  the tree search. 
It was successfully appl ied in G U G A - b a s e d  methods  (see, e.g., [8]). The method  
needs almost  no space but  it is slightly slower than the breadth  search one. 

3. The depth  search algori thm modified by  taking an advantage o f  the simple 
structure o f  the right border  area o f  the graph. It has all advantages o f  the 
convent ional  depth search algori thm and is always faster than the bread th  search 

one. 

4. Broken depth search. The depth search algori thm is here executed to find all 
contr ibutions f rom the head  o f  the graph to a chosen level and f rom the tail to 
the same level. The results are then combined  together.  This is the o tp imum 
algorithm. For  large graphs the execution is here approximate ly  equal to the 
square root  o f  that  for  the convent ional  depth search algori thm and the space 
requirements are only slightly enlarged compared  with the classical tree-search 

method.  

Typical  t imings for const ruct ion o f  the index vector  are collected in Table 1. 

3. Matrix elements 

Due to the separat ion o f  the orbital space f rom the spin space, the evaluat ion o f  
matrix elements is per formed in two steps. In  the first step the orbital graph is 
analyzed.  In  the second step the spin branching diagram is used to generate the 
coupl ing coefficients. Subsequently,  the coefficients are multiplied by the 
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appropriate integrals to form the matrix elements. Though in some GUGA-based 
programs, as e.g. in the one developed by Saunders and van Lenthe [9], the 
orbital and the spin parts are also treated independently, this separation is intrinsic 
to the SGGA approach in the most natural way. 

The algorithm for evaluation the coupling coefficients has been described else- 
where [5, 12, 13]. The one-electron coupling coefficients are generated in core 
with a speed comparaLb!e with reading the formula list from a tape, requiring less 
than one multiplication per an element of U(P) .  For example [13], in the case 
of 10 open shells coupled to singlets, the dimension of U(P)  is 42 and there are 
45 different cycles ( ~ . . . j )  with j - i =  1, 2 , .o .  ,9. The total number of U(P)  
matrix elements corresponding to all these cycles is equal to 42• 42 x 45 = 79 380. 
Their calculation takes 0.2 s on the Siemens 7880 and less than 0.03 s on the 
CRAY 1. This gives an average speed of more than 2.6 million elements per 
second on the CRAY 1. Evaluation of the one-electron coupling coefficients, 
which includes also matrix elements 21/2U((i �9 �9 �9 j))Ik is performed with an average 
speed of  about 400 thousand per second which compares with the speed of  about 
650 per second when reading a tape. This timing may be further improved by an 
optimization of the program. We therefore avoid storing the coupling coeff• 
on an external file, even in cases of very large internal spaces. It is worthwhile 
to note that the efficiency of  the algorithm grows with the number of open shells 
[13]. A detailed discussion of the method, including a discussion of the algorithms 
for evaluation of the two-electron coupling coefficients, is given in [12] and [13]. 

The analysis of the orbital graph is aimed at finding all pairs of interacting 
configurations for a given set of orbitais being involved in the integrals under 
consideration and at identifying the permutations which determine the coupling 
constants. The three types of matrix elements - namely (i) those between the 
same configurations, forming the diagonal part of the CI matrix; (ii) those 
between configurations differing by one orbital, corresponding to the two-segment 
loops in the orbital graph; and (iii) those between configurations differing by 
two orbitals, corresponding to the three- and four-segment loops in the orbital 
graph - are expressed by different kinds of formulas and therefore are treated 
using three different algorithms. 

The diagonal part is calculated using the running-over-the-graph algorithm, as 
it is described in the previous section. Since the method contains nothing par- 
ticularly new compared with other DCI codes, we do not discuss here any details. 

The two-segment loop contributions comprise the pairs of configurations differing 
by one orbital. In a single matrix element expression there appear integrals which 
depend upon all orbitals. The coupling coefficients depend upon distribution of 
singles between the corresponding levels in the graph (cf. Eq. (I.182)). Therefore 
all the matrix elements are different and in the process of their evaluation 
occupation numbers of all orbitals in both configurations involved must be known. 
Further, information about the entire paths representing the pair of configurations 
must be available in each case. The algorithm for the matrix element evaluation 
may be divided into two parts. The first one, referred to as the "logical part",  
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finds pairs of the interacting CSVs, the permutations Px (Eq. (I.182)), and 
calculates the values of (i[Glj) (Eq. (1.183)). The logical part is essentially based 
on a properly modified routine for running over the graph and takes less than 
"10% of the entire time spent for the two-segment loop calculations. In the second 
part the contributions Ax.(P)(ipljp ) are calculated and summed together. 

The two-segment loop procedure is illustrated in Table 2, where some statistical 
data and CPU times are given for the CI bases presented in Figs. 4 (n = 11) and 
3 (n = 14). The quantities displayed include: the number of CSVs (Ko), the length 
of the CI expansion (Ks), the number of blocks of matrix elements, i.e. the 
number of interacting CSVs (MB), the number of matrix elements (M~) - each 
of the Ms blocks contributes f(S, sx)f(S, s~,) elements - and CPU times on the 
Siemens 7880 for execution of the first and the second part of the algorithm (h 
and t 2 respectively). In general, the bigger the ratio Ks/Kv, i.e. the bigger the 
proportion of the configurations with many open shells, the higher is the efficiency. 
The ratio M~/M~ tells us how many matrix elements, on the average, are 
determined by a single pair of CSVs. As we can see from the table, the logical 
part may handle 120-140 thousand of blocks in a second on the Siemens 7880. 
The speed of the matrix element evaluation in the second part of the algorithm 
is slightly greater, viz. 150-210 thousand elements per second. Of course, both 
parts of the algorithm are executed during the same graph searching process. It 
is interesting to note that the execution time grows almost (a little less than) 
linearily with the number of CSFs (cf the last entry of Table 2). 

Table 2. Evaluation of matrix elements resulting from the two- 
segment loops in the orbital graph. The CI bases are the ones 
presented in Fig. 4 (n = 11) and in Fig. 3 (n = 14). The quantities 
displayed: the number of configuration state vectors ( K v )  , the 
length of the C1 expansion (Ks) , the number of blocks of matrix 
elements (MB) , the number of  matrix elements (ME) , CPU 
times (in seconds) on Siemens 7880 for creation the matrix 
elements ( t  1 = the logical part and t 2 = the computational part) 

n = l l  n = 1 4  

K v 12 396 76 670 

K s 30 744 256 473 

K s / K v  2.5 3.3 
M B 179 251 1 149 436 

M e 2 194 486 31 564 958 

M E /  M B 12.2 27.5 

t~ 1.4 8.2 

t 2 14.4 149.4 

M B / t  l 128 036 140 175 

M E / t  2 151 344 211 278 

K s / ( t  I + t2) 1 946 1 623 

a Includes evaluation of (([GIj) integrals (cf Eqs. (I.182) and 
(1.183)) 
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In the case of three- and four-segment loops (configurations differing by two 
orbitals) a matrix element depends upon three/four orbital indices only. The 
information being derived from the graph and associated with the path segments 
other than that corresponding to the three/four orbitals mentioned above, includes 
the number of singles between the head of the graph and the levels defined by 
the three/four orbitals and the lexical contributions from the parallel segments 
of the paths only. For a given set of orbital indices, matrix elements associated 
with a given distribution of singles are the same. It is desirable to construct the 
algorithm in such a way that the coupling coefficients are calculated for the 
different blocks only, We denote by M* the number of different blocks and by 
M* the number of the matrix elements derived from different blocks only. The 
ratio * * Me/MB gives us the average size of the block being calculated by this kind 
of algorithm. It may be used as an estimate of what can be gained by an explicit 
separation of the spin space. 

Here too, as was the case for the two-segment loops, the algorithm may be divided 
into a "logical" and a "computational" part. The logical part of the DCI procedure 
has here the following structure: 

(1) DO-loop over the orbital indices; 
(2) DO-loops over all distributions of singles in the path segments contained 

between the levels in the graph determined by the indices defined in (1); 
(3) Consideration of all chains of loops in order to find the permutations defining 

the coupling coefficients (Eq. 4.4.b in I); 
(4) Determination of the lexical indices of the pairs of configurations which are 

coupled (in terms of the results of (3)) and belong to the CI basis (consulting 
the index vector); 

(5) For each set of configurations being coupled by the same coupling constants 
determine the constants. 

Consequently the coupling coefficients are determined after the removed configur- 
ations are eliminated by the index vector. In addition, the algorithm is in fact 
permutation driven. For a given integral (1) we first determine the distribution 
of singles (2) and, considering all chains of loops (3), the set of permutations 
associated with the distribution of singles. The permutations are determined once 
for all those pairs of configurations which are compatible with the data defined 
in steps (1) and (2). In the case of the four-segment loops there are 8 different 
chains (consisting of 6 loops each). Only 3 permutations, i.e. only 3 matrices of 
the coupling coefficients, are associated with a chain (cf. I, Tables 8 and 9). Some 
statistical data reflecting the efficiency of this scheme are collected in Table 3. 
In the cases considered, the ratio MB/M* for three- and four-segment loops 
ranges from 221 to 8. Then, we calculate the coupling coefficients for only 0.5-13% 
of the interacting pairs of CSVs. The CPU time for executing the logical part of 
the algorithm in the case of the four-segment loops, may be expressed as t = aK~. 
In the case of full CI and n = N, for the Siemens 7880, we have b = 1.2 and, if 
a = 2.5 and Kv is in thousands, then t is in seconds. Similarly, for N = 6 and 
n->6, we have b = 1.5 and a = 1.8. This timing, though quite satisfactory, is 
expected to be considerably reduced after further optimization of the program. 



198 W. Duch and J. Karwowski 

Table 3. Structure of the orbital Part of the internal space in 
the case of three- and four-segment loops. The CI bases are 
the ones presented in Fig. 4 (n = 11) and in Fig. 2 (n = 14, 
SDTQ). The quantities displayed: The number of configuration 
state vectors (Kv), the length of the CI expansion (Ks) , the 
number of blocks of matrix elements (MB), the number of 
different blocks (M*~), the number of matrix elements (Me), 
the number of matrix elements derived from the different blocks 
only (M*) 

n = 11 n = 14, SDTQ a 

Kv 12 396 7 071 
K s 30 744 17 678 
Ks/ K v 2.5 2.5 

Three-segment loops: 
M B 354 204 125 992 
MB/M* 220.7 31.7 
M E 2 821 784 679 466 
ME/M ~ 35.7 14.8 
ME/M Y 49.3 11.5 

Four-segment loops: 
M s 1 241 184 464 256 
MB/M*B 34.2 7.8 
M E 16 637 376 5 440 434 
M~/M~ 9.5 4.8 
M J M B  48.2 19.0 

Only ~A 1 configurations 

4. Summary 

It is interest ing to see how far the configurat ion in teract ion method  - the classical 

approach  to s ta t ionary problems of q u a n t u m  mechanics  - can be developed.  The 
in t roduc t ion  of graphical  representa t ion  of model  (CI)  spaces in  molecular  [3, 5] 
and  recently also in a tomic and  nuclear  physics [17], giving deep insight  into 

the structure of CSFs space, has opened  the way to a dramat ic  increase in the 

efficiency of computa t ions .  So far in G U G A - b a s e d  programs only  the simple 

structure of  singly and  doubly  excited CSFs (external  space) is used and  the 

programs are inefficient for more than  double  excitations. Results o f  full CI or 
near ly full CI  calculat ions  are interest ing not  only as benchmarks :  for example,  
in nuc lear  physics they are of fundamen ta l  importance.  It is our  goal to achieve 
similar efficiency for general  CI expansions  as is achieved by G U G A  programs 
with separa t ion  of external  spaces. Pre l iminary data on a general  direct CI 
program based on S G G A  are given in this paper.  The most  p romis ing  approach,  
bu t  logically very complicated if all in terna l  space relat ions are used, is based 

on the b roken  depth search algorithm. Al though this approach  was used only to 
a very l imited extent t imings  ob ta ined  in the test cases suggest the possibil i ty of 

a formula  tape e l iminat ion.  
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